3.2.31 \(\int \frac {\csc (e+f x)}{(a+b \tan ^2(e+f x))^{3/2}} \, dx\) [131]

3.2.31.1 Optimal result
3.2.31.2 Mathematica [B] (warning: unable to verify)
3.2.31.3 Rubi [A] (verified)
3.2.31.4 Maple [B] (warning: unable to verify)
3.2.31.5 Fricas [B] (verification not implemented)
3.2.31.6 Sympy [F]
3.2.31.7 Maxima [F]
3.2.31.8 Giac [F]
3.2.31.9 Mupad [F(-1)]

3.2.31.1 Optimal result

Integrand size = 23, antiderivative size = 84 \[ \int \frac {\csc (e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx=-\frac {\text {arctanh}\left (\frac {\sqrt {a} \sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{a^{3/2} f}-\frac {b \sec (e+f x)}{a (a-b) f \sqrt {a-b+b \sec ^2(e+f x)}} \]

output
-arctanh(sec(f*x+e)*a^(1/2)/(a-b+b*sec(f*x+e)^2)^(1/2))/a^(3/2)/f-b*sec(f* 
x+e)/a/(a-b)/f/(a-b+b*sec(f*x+e)^2)^(1/2)
 
3.2.31.2 Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(1007\) vs. \(2(84)=168\).

Time = 8.78 (sec) , antiderivative size = 1007, normalized size of antiderivative = 11.99 \[ \int \frac {\csc (e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx=-\frac {2 b \cos (e+f x) \sqrt {\frac {a+b+a \cos (2 (e+f x))-b \cos (2 (e+f x))}{1+\cos (2 (e+f x))}}}{a (a-b) f (a+b+a \cos (2 (e+f x))-b \cos (2 (e+f x)))}+\frac {\frac {(1+\cos (e+f x)) \sqrt {\frac {1+\cos (2 (e+f x))}{(1+\cos (e+f x))^2}} \sqrt {\frac {a+b+(a-b) \cos (2 (e+f x))}{1+\cos (2 (e+f x))}} \left (4 \sqrt {a} \text {arctanh}\left (\frac {-\sqrt {a} \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )+\sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}{2 \sqrt {b}}\right )-\sqrt {b} \left (2 \text {arctanh}\left (\tan ^2\left (\frac {1}{2} (e+f x)\right )-\frac {\sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}{\sqrt {a}}\right )+\log \left (a-2 b-a \tan ^2\left (\frac {1}{2} (e+f x)\right )+\sqrt {a} \sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}\right )\right )\right ) \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right ) \left (1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right ) \sqrt {\frac {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}{\left (1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}}{4 \sqrt {a} \sqrt {b} \sqrt {a+b+(a-b) \cos (2 (e+f x))} \sqrt {\left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2} \sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}-\frac {(1+\cos (e+f x)) \sqrt {\frac {1+\cos (2 (e+f x))}{(1+\cos (e+f x))^2}} \sqrt {\frac {a+b+(a-b) \cos (2 (e+f x))}{1+\cos (2 (e+f x))}} \left (4 \sqrt {a} \text {arctanh}\left (\frac {-\sqrt {a} \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )+\sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}{2 \sqrt {b}}\right )+\sqrt {b} \left (2 \text {arctanh}\left (\tan ^2\left (\frac {1}{2} (e+f x)\right )-\frac {\sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}{\sqrt {a}}\right )+\log \left (a-2 b-a \tan ^2\left (\frac {1}{2} (e+f x)\right )+\sqrt {a} \sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}\right )\right )\right ) \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right ) \left (1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right ) \sqrt {\frac {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}{\left (1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}}{4 \sqrt {a} \sqrt {b} \sqrt {a+b+(a-b) \cos (2 (e+f x))} \sqrt {\left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2} \sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}}{a f} \]

input
Integrate[Csc[e + f*x]/(a + b*Tan[e + f*x]^2)^(3/2),x]
 
output
(-2*b*Cos[e + f*x]*Sqrt[(a + b + a*Cos[2*(e + f*x)] - b*Cos[2*(e + f*x)])/ 
(1 + Cos[2*(e + f*x)])])/(a*(a - b)*f*(a + b + a*Cos[2*(e + f*x)] - b*Cos[ 
2*(e + f*x)])) + (((1 + Cos[e + f*x])*Sqrt[(1 + Cos[2*(e + f*x)])/(1 + Cos 
[e + f*x])^2]*Sqrt[(a + b + (a - b)*Cos[2*(e + f*x)])/(1 + Cos[2*(e + f*x) 
])]*(4*Sqrt[a]*ArcTanh[(-(Sqrt[a]*(-1 + Tan[(e + f*x)/2]^2)) + Sqrt[4*b*Ta 
n[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2])/(2*Sqrt[b])] - Sqrt[b]* 
(2*ArcTanh[Tan[(e + f*x)/2]^2 - Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[ 
(e + f*x)/2]^2)^2]/Sqrt[a]] + Log[a - 2*b - a*Tan[(e + f*x)/2]^2 + Sqrt[a] 
*Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2]]))*(-1 + Tan 
[(e + f*x)/2]^2)*(1 + Tan[(e + f*x)/2]^2)*Sqrt[(4*b*Tan[(e + f*x)/2]^2 + a 
*(-1 + Tan[(e + f*x)/2]^2)^2)/(1 + Tan[(e + f*x)/2]^2)^2])/(4*Sqrt[a]*Sqrt 
[b]*Sqrt[a + b + (a - b)*Cos[2*(e + f*x)]]*Sqrt[(-1 + Tan[(e + f*x)/2]^2)^ 
2]*Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2]) - ((1 + C 
os[e + f*x])*Sqrt[(1 + Cos[2*(e + f*x)])/(1 + Cos[e + f*x])^2]*Sqrt[(a + b 
 + (a - b)*Cos[2*(e + f*x)])/(1 + Cos[2*(e + f*x)])]*(4*Sqrt[a]*ArcTanh[(- 
(Sqrt[a]*(-1 + Tan[(e + f*x)/2]^2)) + Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 
+ Tan[(e + f*x)/2]^2)^2])/(2*Sqrt[b])] + Sqrt[b]*(2*ArcTanh[Tan[(e + f*x)/ 
2]^2 - Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2]/Sqrt[a 
]] + Log[a - 2*b - a*Tan[(e + f*x)/2]^2 + Sqrt[a]*Sqrt[4*b*Tan[(e + f*x)/2 
]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2]]))*(-1 + Tan[(e + f*x)/2]^2)*(1 + ...
 
3.2.31.3 Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 82, normalized size of antiderivative = 0.98, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {3042, 4147, 25, 296, 291, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\csc (e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin (e+f x) \left (a+b \tan (e+f x)^2\right )^{3/2}}dx\)

\(\Big \downarrow \) 4147

\(\displaystyle \frac {\int -\frac {1}{\left (1-\sec ^2(e+f x)\right ) \left (b \sec ^2(e+f x)+a-b\right )^{3/2}}d\sec (e+f x)}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\int \frac {1}{\left (1-\sec ^2(e+f x)\right ) \left (b \sec ^2(e+f x)+a-b\right )^{3/2}}d\sec (e+f x)}{f}\)

\(\Big \downarrow \) 296

\(\displaystyle \frac {-\frac {\int \frac {1}{\left (1-\sec ^2(e+f x)\right ) \sqrt {b \sec ^2(e+f x)+a-b}}d\sec (e+f x)}{a}-\frac {b \sec (e+f x)}{a (a-b) \sqrt {a+b \sec ^2(e+f x)-b}}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {-\frac {\int \frac {1}{1-\frac {a \sec ^2(e+f x)}{b \sec ^2(e+f x)+a-b}}d\frac {\sec (e+f x)}{\sqrt {b \sec ^2(e+f x)+a-b}}}{a}-\frac {b \sec (e+f x)}{a (a-b) \sqrt {a+b \sec ^2(e+f x)-b}}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {-\frac {\text {arctanh}\left (\frac {\sqrt {a} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)-b}}\right )}{a^{3/2}}-\frac {b \sec (e+f x)}{a (a-b) \sqrt {a+b \sec ^2(e+f x)-b}}}{f}\)

input
Int[Csc[e + f*x]/(a + b*Tan[e + f*x]^2)^(3/2),x]
 
output
(-(ArcTanh[(Sqrt[a]*Sec[e + f*x])/Sqrt[a - b + b*Sec[e + f*x]^2]]/a^(3/2)) 
 - (b*Sec[e + f*x])/(a*(a - b)*Sqrt[a - b + b*Sec[e + f*x]^2]))/f
 

3.2.31.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 296
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[(-b)*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(2*a*(p + 1)*(b*c - a*d)) 
), x] + Simp[(b*c + 2*(p + 1)*(b*c - a*d))/(2*a*(p + 1)*(b*c - a*d))   Int[ 
(a + b*x^2)^(p + 1)*(c + d*x^2)^q, x], x] /; FreeQ[{a, b, c, d, q}, x] && N 
eQ[b*c - a*d, 0] && EqQ[2*(p + q + 2) + 1, 0] && (LtQ[p, -1] ||  !LtQ[q, -1 
]) && NeQ[p, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4147
Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^2)^ 
(p_.), x_Symbol] :> With[{ff = FreeFactors[Sec[e + f*x], x]}, Simp[1/(f*ff^ 
m)   Subst[Int[(-1 + ff^2*x^2)^((m - 1)/2)*((a - b + b*ff^2*x^2)^p/x^(m + 1 
)), x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[( 
m - 1)/2]
 
3.2.31.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(1045\) vs. \(2(76)=152\).

Time = 0.85 (sec) , antiderivative size = 1046, normalized size of antiderivative = 12.45

method result size
default \(\text {Expression too large to display}\) \(1046\)

input
int(csc(f*x+e)/(a+b*tan(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)
 
output
1/2/f/a^(5/2)/(a-b)*(a*(-cos(f*x+e)+1)^4*csc(f*x+e)^4-2*a*(-cos(f*x+e)+1)^ 
2*csc(f*x+e)^2+4*b*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+a)*(2*(-cos(f*x+e)+1)^2* 
b*a^(3/2)*csc(f*x+e)^2+ln((a*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+(a*(-cos(f*x+e 
)+1)^4*csc(f*x+e)^4-2*a*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+4*b*(-cos(f*x+e)+1) 
^2*csc(f*x+e)^2+a)^(1/2)*a^(1/2)-a+2*b)/a^(1/2))*a^2*(a*(-cos(f*x+e)+1)^4* 
csc(f*x+e)^4-2*a*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+4*b*(-cos(f*x+e)+1)^2*csc( 
f*x+e)^2+a)^(1/2)-ln((a*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+(a*(-cos(f*x+e)+1)^ 
4*csc(f*x+e)^4-2*a*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+4*b*(-cos(f*x+e)+1)^2*cs 
c(f*x+e)^2+a)^(1/2)*a^(1/2)-a+2*b)/a^(1/2))*a*(a*(-cos(f*x+e)+1)^4*csc(f*x 
+e)^4-2*a*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+4*b*(-cos(f*x+e)+1)^2*csc(f*x+e)^ 
2+a)^(1/2)*b+ln(2/(-cos(f*x+e)+1)^2*(-a*(-cos(f*x+e)+1)^2+2*b*(-cos(f*x+e) 
+1)^2+(a*(-cos(f*x+e)+1)^4*csc(f*x+e)^4-2*a*(-cos(f*x+e)+1)^2*csc(f*x+e)^2 
+4*b*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+a)^(1/2)*a^(1/2)*sin(f*x+e)^2+a*sin(f* 
x+e)^2))*a^2*(a*(-cos(f*x+e)+1)^4*csc(f*x+e)^4-2*a*(-cos(f*x+e)+1)^2*csc(f 
*x+e)^2+4*b*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+a)^(1/2)-ln(2/(-cos(f*x+e)+1)^2 
*(-a*(-cos(f*x+e)+1)^2+2*b*(-cos(f*x+e)+1)^2+(a*(-cos(f*x+e)+1)^4*csc(f*x+ 
e)^4-2*a*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+4*b*(-cos(f*x+e)+1)^2*csc(f*x+e)^2 
+a)^(1/2)*a^(1/2)*sin(f*x+e)^2+a*sin(f*x+e)^2))*a*(a*(-cos(f*x+e)+1)^4*csc 
(f*x+e)^4-2*a*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+4*b*(-cos(f*x+e)+1)^2*csc(f*x 
+e)^2+a)^(1/2)*b+2*b*a^(3/2))/((a*(-cos(f*x+e)+1)^4*csc(f*x+e)^4-2*a*(-...
 
3.2.31.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 164 vs. \(2 (76) = 152\).

Time = 0.36 (sec) , antiderivative size = 355, normalized size of antiderivative = 4.23 \[ \int \frac {\csc (e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx=\left [-\frac {2 \, a b \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) - {\left ({\left (a^{2} - 2 \, a b + b^{2}\right )} \cos \left (f x + e\right )^{2} + a b - b^{2}\right )} \sqrt {a} \log \left (-\frac {2 \, {\left ({\left (a - b\right )} \cos \left (f x + e\right )^{2} - 2 \, \sqrt {a} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + a + b\right )}}{\cos \left (f x + e\right )^{2} - 1}\right )}{2 \, {\left ({\left (a^{4} - 2 \, a^{3} b + a^{2} b^{2}\right )} f \cos \left (f x + e\right )^{2} + {\left (a^{3} b - a^{2} b^{2}\right )} f\right )}}, -\frac {a b \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) - {\left ({\left (a^{2} - 2 \, a b + b^{2}\right )} \cos \left (f x + e\right )^{2} + a b - b^{2}\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {-a} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{a}\right )}{{\left (a^{4} - 2 \, a^{3} b + a^{2} b^{2}\right )} f \cos \left (f x + e\right )^{2} + {\left (a^{3} b - a^{2} b^{2}\right )} f}\right ] \]

input
integrate(csc(f*x+e)/(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="fricas")
 
output
[-1/2*(2*a*b*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e 
) - ((a^2 - 2*a*b + b^2)*cos(f*x + e)^2 + a*b - b^2)*sqrt(a)*log(-2*((a - 
b)*cos(f*x + e)^2 - 2*sqrt(a)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + 
e)^2)*cos(f*x + e) + a + b)/(cos(f*x + e)^2 - 1)))/((a^4 - 2*a^3*b + a^2*b 
^2)*f*cos(f*x + e)^2 + (a^3*b - a^2*b^2)*f), -(a*b*sqrt(((a - b)*cos(f*x + 
 e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) - ((a^2 - 2*a*b + b^2)*cos(f*x + e 
)^2 + a*b - b^2)*sqrt(-a)*arctan(sqrt(-a)*sqrt(((a - b)*cos(f*x + e)^2 + b 
)/cos(f*x + e)^2)*cos(f*x + e)/a))/((a^4 - 2*a^3*b + a^2*b^2)*f*cos(f*x + 
e)^2 + (a^3*b - a^2*b^2)*f)]
 
3.2.31.6 Sympy [F]

\[ \int \frac {\csc (e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {\csc {\left (e + f x \right )}}{\left (a + b \tan ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx \]

input
integrate(csc(f*x+e)/(a+b*tan(f*x+e)**2)**(3/2),x)
 
output
Integral(csc(e + f*x)/(a + b*tan(e + f*x)**2)**(3/2), x)
 
3.2.31.7 Maxima [F]

\[ \int \frac {\csc (e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {\csc \left (f x + e\right )}{{\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(csc(f*x+e)/(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="maxima")
 
output
integrate(csc(f*x + e)/(b*tan(f*x + e)^2 + a)^(3/2), x)
 
3.2.31.8 Giac [F]

\[ \int \frac {\csc (e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {\csc \left (f x + e\right )}{{\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(csc(f*x+e)/(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="giac")
 
output
sage0*x
 
3.2.31.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\csc (e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {1}{\sin \left (e+f\,x\right )\,{\left (b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a\right )}^{3/2}} \,d x \]

input
int(1/(sin(e + f*x)*(a + b*tan(e + f*x)^2)^(3/2)),x)
 
output
int(1/(sin(e + f*x)*(a + b*tan(e + f*x)^2)^(3/2)), x)